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J. Phys. A: Math. Gen. 15 (1982) 153-156. Printed in Great Britain 

Solutions in Riemannian space-times of arbitrary 
dimension 

Dexter J Booth 
Department of Computer Studies and Mathematics, The Polytechnic, Queensgate, 
Huddersfield HD4 4DH, UK 

Received 10 June 1981 

Abstract. The Schwarzchild solution and the solution of Booth are shown to be specific 
examples of a genus of solutions in space-times of arbitrary spatial dimension. 

1. Introduction 

In a previous publication (Booth 1981) it has been shown that by considering a 
Riemannian geometry within a space-time of one temporal dimension and four spatial 
dimensions a vacuum solution exists to the extended Einstein equations 

G.. = 0 (i, j = O ,  l , ,  . . , 4 )  (1.1) 

that correlates, on an appropriate hypersurface, with the massless Reissner-Nordstrom 
solution to the Einstein-Maxwell field equations. In this paper it is shown that this 
result and also the Schwarzchild solution are specific examples of a genus of solutions in 
space-times of arbitrary dimension. Furthermore, all such solutions satisfy a Birkhoff - 
type theorem indicating their unique, static nature. 

2. The geometry 

In a Riemannian space-time of one temporal dimension and IZ spatial dimensions that is 
coordinated by the Cartesian set 

(2.1) 

the ‘flat-space’ interval is given as 

d~z=(d~o)z- (dX1)z- .  . . -(dx”)’. 

Defining a set of ‘super-spherical’? polar coordinates 
{R, x2, x3, - * , X n l  

t The phrase ‘super-spherical’ is somewhat inelegant. However, the analogy is clear when considering the 
case n = 3 where ,ya = 4, ,y2 = 8 and R = r-the spherical polar coordinates. 
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by the equations 
1 x = R sin x2 sin x 3  . . . sin xn . , cos x,,, 

x ' = R s i n x 2 s i n ~  3 . . . s i n X n _ I s i n ~ , ,  

x = R sin x2 sin x3  . . . cos ,yn ,, 3 

X "  = R COS X2, 12.41 

equation (2.2) becomes 

ds2=  c2  d t2-dR2-R2[[d~~+sin 'x2{dx~+sin2X3[dx~+.  . .+sin x,, 2 

i2.5) 2 x(dxn 1 d x i ) .  . .]ID. 
For simplicity equation (2.5) will hereafter be written as 

ds2=C2 dt2-dR2- R 2  dR2. 12.6) 

3. Curved space-time 

By following a simple extension of well established procedure (Weinberg 1972), it is a 
straightforward matter to show that the interval for a space-time distorted by a 
stationary, super-spherical disturbance? can be written in the form 

(3.1) ds2 = e20c2 dt2 - e2@ dR2  -R2 da '  

where 
N =cr(R, t ) ,  P = P ( R ,  t ) .  13.21 

The results of analysing this metric through the Riemannian (n  + 1) space-time and 
equation (1.1) are given in the Appendix, where we have listed the Christoffel symbols 
and Ricci tensor components. From these results it is concluded that 

13.3 I @(R, t ) / a t  = 0 

whence 

and (Landau and Lifshitz 1975) 

P = P ( R )  13.4) 

P(R)  = -a(R). (3.5 ) 

Furthermore 

and 
e2"[2al/R + i n  -2)/R2] = !n  -.2)/R2. 

(3 .6)  

(3.7) 

Equation (3.6) is, remarkably, Laplace's equation in TZ dimensions for a single 'radial' 
parameter R which yields the solution 

= A + B I R " - ~ .  (3.8) 

7 The word 'mass' only has defined meaning in (3 + 1) space-time and accordingly IS not used here 
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Equation (3.7) ensures that 

A = l  
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(3.9) 
thus allowing asymptotic 'flatness'. 

Clearly, for n = 3 this solution is the well-known Schwarzchild solution and for 
n = 4 it is the solution of Booth (1981) referred to earlier. Also Birkhoffs theorem is 
satisfied in respect of the unique, static nature of each solution. 

4. Discussion 

How delightful that Newtonian concepts of potential should be carried through for a 
Riemannian geometry of arbitrary spatial dimension. 

The stimulus for this work is a desire to obtain a solution in (4 + 1) space-time that 
correlates, on the appropriate hypersurface, to the massive Reissner-Nordstrom 
solution. Whether this is at all possible is open to conjecture, but to this end it is noted 
that the Schwarzchild solution in (3+1) space-time is also a solution in (4+1) 
space-time. 

Indeed, given the intervals 

ds:=e2"c2 dt2-ee-2u dR2-R2 dn2  (4.1) 
and 

ds%=e2"c2dt2-e-2" dR2-R2dR2-(dxn'')2 

it is found that 

eZu = 1 + B/R"-~. 

Also, since 

gn+l,n+l= -1 (constant) 

it is readily shown that 

5 = C Y .  

Acknowledgments 

The author is greatly indebeted to John Carminati and Dr Gary Miller, both of the 
University of Victoria, British Columbia, for the many discussions and their suggestions 
during the summer of 1980 which prompted this investigation. 

Appendix 

Here are listed the Christoffel symbols and Ricci tensor components for the metric 
defined by 

ds2 = e2ac2 dt2 - e2' dR2 - R 2  dxz - R 2  sin2 x2 dx: - . . . 
2 2  2 2 2 -R sin x2sin x3 . .  .sin xnP1 dXn 
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In the above 

a0 = a(a ,/ax", ai r a ( ( ~ ) / a R ,  etc. 
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